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Alrstraet--The instabilities of a fluid layer of a binary alloy, cooled from above and consequently frozen 
at bottom, are considered. The released light material at the freezing interface is diffused by pressure and 
composition gradients. As a result of a small cooling rate and a large thermal diffusivity, the thermal effect 
is inefficient, compared with the compositional one, for driving a possible convection. Cellular convective 
modes of long and short wavelengths, requiring 1 < R < 1 + S+ qa2/Q, and morphological mode of short 
wavelength, requiring R > 1 +S+qa2/Q, are found. As Schmidt number PL "-+ ~,  the instabilities set in 
stationarily at the marginal state. Nonlinear analysis of cellular convective modes of long wavelengths 
shows that finite amplitudes of disturbances just past the marginal state behave like (R-Re)1/2. Suberitical 

instabilities are possible for cellular convective modes other than rolls. 

INTRODUCTION 

Thermal convection of one component fluid, driven 
through thermal buoyancy, has been extensively studied 
[t-5]. Nonlinear analysis has also been investigated 
[6-8]. Double-diffusive convection of a two-com- 
ponent fluid can be induced through the mutual inter- 
action of thermal and compositional gradients, even 
the density profile is statically stable [9, 10]. Either 
oscillatory or subcritical instability is possible [11]. 
Wollkind and Segel [12] treat the morphological insta- 
bility of a freezing interface. Both cellular and den- 
dritic structures of the interface are discovered. Sek- 
erka et al. [13] study the onset of the coupled 
compositional convective and morphological insta- 
bility with a stabilizing temperature gradient and find 
that the oscillatory instability is possible. In their 
study, Loper and Roberts [14] and Jou [15] include 
the material diffusion by the pressure gradient. 

The main reason for studying the compositional 
convection with freezing lies with the concern of the 
efficiency of energy conversion and of the self-induced 
energy source. Due to the large thermal diffusivity, 
most of the available heat is conducted along the 
adiabat before the convection can set in. In contrast, 
it takes only a small flux of light material, due to the 
small material diffusivity, to reach a marginal state 
through the material diffusion [14-16]. The key fac- 

tors of compositional convection are the cooling rate, 
the released light material and the material diffusion. 

PHYSICAL FORMULATION 

A fluid layer of binary alloy, composed of a heavy 
metallic component and a light non-metallic compon- 
ent, lies between two horizontal, infinite and rigid 
boundaries with a distance (d- t / )  apart. The top 
boundary is subject to a small outward heat flux and 
the freezing, provided d TL/dp > d TA/dp, occurs at the 
lower boundary, where TL is the liquidus temperature, 
TA is the adiabatic temperature and p is the pressure. 
In considering the thermal and dynamical state of the 
earth's core, the solid inner core has been forming and 
growing from the liquid outer core of a binary alloy 
over a long period of time. The liquid outer core can 
be treated as being nearly adiabatic and homo- 
geneous. For a liquid outer core to exist, the adiabat 
must intersect the liquidus at the freezing interface. 
Stevenson [17] has shown quantitatively that the ratio 
of dTL/dp to dT^/dp is about 1.67 and the condition, 
dTL/dp > dTA/dp, is well satisfied. The solidification 
thus proceeds from the bottom upward, despite the 
top being the coldest. 

Since the composition of light component in the 
liquid alloy ~ and that in the solid alloy is are less 
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NOMENCLATURE 

a wavenumber fl 
A finite amplitude 7 
C specific heat capacity c5 
Cp specific heat capacity at constant 43 

pressure 
D material diffusivity r/ 
19 d/dz I~, 
d original position of the upper 

boundary fi 
F normalized solution of ~' at marginal /~ 

state v 
f horizontal harmonic function 
g gravity ~0(0) 
H outward heat flux 
k thermal diffusivity p(ps) 
K thermal conductivity a = ar + cr~ 
L = 17 ~ latent heat 
fi normal unit vector 
p pressure Parameters 
t time ~: L 

T temperature ~:2 
T0(0) temperature at the lower boundary ek 
TA adiabatic temperature Q 
Tc conducting temperature R 
T L liquidus temperature PL 
7 ~ liquidus temperature of one PT 

component S 
u velocity So 
u~ vertical velocity 
v advancing velocity of the lower ~o 

boundary q 
V advancing velocity of the planar lower 

boundary 
W normalized solution of u_ at marginal 

state 
w scalar variable 
x, y, z Cartesian coordinates 
X, Y, Z strained Cartesian coordinates 

vertical unit vector. 

rate of change of temperature 
coefficient of surface tension 
volume change upon freezing 
volume change due to compositional 
change 
position of the lower boundary 
relative chemical potential of liquid 
alloy 

dynamical viscosity 
kinematic viscosity 
light composition of liquid alloy 
light composition at the lower 
boundary 
density of liquid (solid) alloy 

complex frequency. 

aVID 
p3gd/p~o(O) 
dV/K 
(p6gdZ)2 /v D fi 
pv ~o(O)/p3gD 
Schmidt number v/D 
HC/VITo(O) 
6/40(0)3 
Vl 2 To (O)/pf4o(O)g 
K/D 
l 2 To(O)/Cp~(O) 
°//pZ~o(O)3g. 

Superscripts 
basic state 
perturbed state 
horizontal average 

* complex conjugate. 

Greek symbols 
coefficient of thermal expansion 

Subscripts 
c critical state. 

than that at the eutectic point 4e, where the eutectic 
point has the lowest temperature at which the liquid 
alloy can exist, the solid alloy contains less light com- 
ponent and a density jump across the freezing inter- 
face causes the releasing of some light material. Con- 
vective instabilities are possible, when a destabilizing 
compositional profile occurs, provided d4/dp > 0 
inside the fluid layer. 

In a thin boundary layer near the freezing interface, 
convective motions are suppressed and heat is 
removed through conduction. The freezing interface, 
advancing upward with a small speed by accumulating 

the frozen binary alloy, is perturbed. If 
dTc/dp < dTL/dp, the liquid alloy is subcooled and is 
frozen directly onto the interface and any perturbation 
eventually dies out, where Tc is the conduction tem- 
perature, the convective flows exhibit cellular patterns. 
Ifd Tc/dp > dTL/dp, the liquid alloy is constitutionally 
supercooled. The freezing is enhanced by the unstable 
growth of the dendrites. The convective flows may 
exhibit non-cellular patterns. 

The governing equations and boundary conditions, 
assuming the Boussinesq's approximation and neg- 
lecting the thermal buoyancy, are [14, 15] 
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V ' u = O  

a~ 
+ (u" V)~ = D(V2~+ LV2p) 

~t - fi 

p [ ~  + (u" V)_u]= - p + p g + # V 2 u _  

p-I = pslq_~3+6 

~=0,  i . V T = - ~ ,  , - r e +  vp =0 

f i ' u  = O, f i x u = O  

at z = d  

(v_. fi) pslT = - kV T" fi 

P / 

T = TL = Tq- 7 p - -  ~ll 4 + pl[1 +(VHr/)2] 3/2 

at z = q (x , y , t )  (10) 

where u is the velocity, T is the temperature, D is the 
material diffusion, tt is the viscosity, C is the heat 
capacity, k is the thermal conductivity, p(pJ is the 
liquid(solid) density, ¢3 and 6 are volume changes due 
to the compositional change and the freezing, H is the 
heat flux, 7 ~ is the liquidus of one component, L = l/~ 
is the latent heat, #~ is the relative chemical potential, 

= 8]..~1/a ~ and 7 is the coefficient of surface tension. 
For the non-convective state, we assume that the 

dependent variables are functions of z and t only, the 
lower boundary is planar and advances upward at a 
small velocity (i.e. r /=  q(t) and v = Vf0 and p~ = p. A 
set of non-dimensional equations, by setting z ~ dz, 
t ~ dZ/Dt, T ~  T r T a n d p  ~ (pgd)p, is obtained. 

a4 a24 a2p 
a t = a z ~ + e 2  az ~ (11) 

@ 
az - 1  (12) 

1 a T  O:T 
f~ at 8z 2 

(1) where e~ = dV/D, s2 = p~gd/fl4r, ek = dV/K  and 
= KID and K is the thermal diffusivity and T~ and 

(2) ~r are the reference temperature and composition. 
Since the compositional and thermal diffusive pro- 
cesses act quickly compared with the advancement 

(3) of the boundary, we may assume el << 1 and ek << 1. 
Expanding about z = 0 and linearizing the boundary 
condition (15), we have 

(4) aT(0) + a2 T(0) I ( C ~ [  O T ( O ) ]  
az az ~ - ~1 ~ T ( 0 ) + - ~ z  "J 

(5) 
[-a~(0) ap(0)] [-024(0) a2p(0)] 

a~(o) ] 
(6) = - - e l  ~(0)-t-~--z r/| at z = 0 .  (16) 

(7) 
Manipulating the perturbation expansions for ¢ and 

(8) T about ~1 

4(z, t) = 40(z) +~1 ¢1 (z, t) + O(~) 
(9) 

T(z, t) = To (z) + el TI (z, t) + 0 (e~) 

and applying to equations (11)-(14) and (16), the 
non-convective solutions in dimensional forms are 

~= 4o(0){1 + e 2 [ d _ R ( d  - ~)J-~-:2 "~-] R D ) ~ t ~  

aT ( H ) a ¢  @ 
a : - - ~ k  ~ ,  ~ + ~ = 0  

at 

aT  __ek(pq T a~ ap - e l 4  
aT = \ ~ /  N + " 2 N  = 

(13) 

z = 1 (14) 

at z = r / = s l t  (15) 

(17) 

fl (') 1 T= ro(0)+~, - + ~ r0(0) 

1 1 z 

where we choose Tr = T(0) and 4r = 40(0) and define 
R = ~V~o(O)/pSgD. To O(1), the heat flux is absent 
and no freezing is possible. To O(el), the heat flux is 
imposed on the top and the freezing does occur at 
the bottom. Rescaling equation (17), by setting 4 ~ 
v/p~gd3~ and z ~ dz, to give 

a¢ 
8z - Q [ 1 - R ( 1 - z ) ]  (19) 

where Q = Coggd2)2/vDFt. 
Although the light composition is increasing with 

time, its profile is assumed unchanged. The minimum 
4, occurring at z = l - 1 / R ,  is equal to 
Q ( R - 1 ) / 2 R +  40(0). For R > 1, a destabilizing com- 
positional profile (i.e. a4/az < o) appears near the 
freezing interface. In the earth's liquid outer core, the 
physical parameter R, neglecting thermal effects, has 
been shown to be about 660, which satisfies the con- 
dition R > 1 very well, and the compositional con- 
vection is dynamically vigorous [18]. 

We separate each dependent variable into a non- 
convective part and a convective part (i.e. u = _~(z, t) 
+ u ' ( x , y , z , t )  . . . . .  etc.). We also let t / = q  



292 J.J. JOU et al. 

( t)+~l"(x,y,t)  and _v = Vd+v ' (x ,y ,  t). Assumption 
IJl/dl << 1 allows us to replace fi by 2 and alan by a/az. 
Non-dimensional governing equations of the con- 
vective state may be obtained by letting 

vD pvD , D VdlTo (0) 
3' ~ p6gd3 ~" p ' - - * ~ - p  T ' ~  K2C T" 

D d 
U' ~ d U' ~l" --* dq" x -* dx and t --* - t 
- -  - -  - -  V 

we expand the perturbed boundary conditions at 
z = q about z = q and, further, about z = 0 and keep 
the first-order terms only. The non-dimensional 
governing equations for convective motion are 

Z [GI~- I - ( / d ' 'V)u ' I=PL  _ _ - V p ' + 4 ' 2 + V 2 u  '_ (20) 

#4' 
e~ &-+(u ' .V)~ '+Q[l-R(1-z)]_u ' :  =V2{ ' (21) 

1E T ] 
e ,~7-+(_u"V)T '  + [ ( l - P s ) z - 1 ] u ~ = V 2 T "  

V ' u ' = 0  

a~' a T '  
u ' -  ~ - 0  at z =  1 

- cz az 

U ' = 0  

~ + Q R ~ f  = 0 (25b) 

aT' 
az +f~(1 -Pv)q '  = 0 (25c) 

QR 
f~o~;-~ T ' + { + Q [ - S o  + S +  (1 - R)]r/' 

+ q V 2 r / ' = 0  at z = 0  (25d) 

where PL = v/D, PT = H/VITo(O), f~o = 12To(O)/ 
Cft42(O), So = V12To(O)/pf4o(O)g, S =  6/40(0)3 and 
q = 7/pZ~o(O)~g. The perturbed pressure terms have 
been dropped by assuming (pj)2gd/f~<<l and 
pJ6gd/f~o(O) << 1. Although So can be incorporated 
into S, however we have assumed a small heat flux on 
the top such that So << S. Elimination of r/' among 
equations (25b)-(25d) yields 

( ~ - ) ~ z '  - (1 - PT) ~z' = 0 (26) 

[ Z Q R X ~ 2  , a~ /  2 a ~ "  

VcJ T ' + Q R {  - Q [ S + ( 1 - R ) ] ~ -  z +qVH~z  = 0. 

the material diffusivity (i.e. f~ >> 1), equation (22) is 
compositionally and diffusively dominated such that 
T' = O(fl) and equation (27) gives rise to 

R ~ ' + ( R - I - S ) ~ +  q 2(a~ ' )  or.  =0 

at z = 0 .  (28) 

As mentioned previously, cellular convective 
modes require dTc/dp < dTL/dp, corresponding to 
R < l + S + q a 2 / Q ,  while morphological modes 
require dTc/dp > dTL/dp, corresponding to 
R > 1 + S +  qa2/Q, here the effect of surface tension is 
taken into account. In considering the freezing inter- 
face, lying between the earth's solid inner and liquid 
outer cores, the ratio of volume change upon freezing 
to that due to the compositional change S is approxi- 
mated to be 0.29 such that the condition 1 + S < R is 
well satisfied [18]. In general, we may conclude that 
morphological instability becomes dominant inside 
the earth's core. 

LINEAR ANALYSIS 
(22) 

The governing equations and boundary conditions 
(23) for the compositional convection, after neglecting 

thermal effects, are 

(24) 

E~ a[+(u ' .V)_u '  = - V p ' + ~ ' ~ + V 2 u  ' (29a) 
(25a) 

a~' +(u'.V)¢'+Q[1-R(l-z)lul = V2~ ' < a~ - 

V ' u ' = 0  

(27) 

Since the thermal diffusivity is much larger than 

~ '  
_ u ' = ~ = 0  at z = l  

(29b) 

(29c) 

(30) 

-u" = R~" + ( R -  I--S)OJ~'z + Qq V2 (8~'~\~,z ] = 0 

at z = 0 .  (31) 

For linear analysis, we neglect the nonlinear terms 
in equation (29). After applying the operator 
/~. (V x V x ) to equation (29a), we have 

~, 8 2 , V24,+V~u ,. (32) 
/ '~ a5 v . u . ,  = 

Let us analyze the problem in terms of normal 
modes by assuming 

u~ = e" aaf (x, y) W(z) 

U'H = e~tVnf (x, y)10W(z) 

4' = e ~ f ( x , y ) F ( z )  

where V, = a/ax[+ a/ayj, v ~ =  - a 2 f a n d  10 = d/dz. 
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Now equations (29)-(32) have the following forms 

( t ~ 2 - a 2 ) ( l ) 2 - a 2 - ~ L t Y ) W = F  ( 33a )  

(1) z - a  2 - e , a ) F =  -aEQ[R(1 - z ) -  1]W (33b) 

W = / ~ W = / ) F = 0  at z =  1 (34) 

W =  I ) W =  R F + ( R - I - S - - ~ a 2 ) I ) F = O  

at z = 0 .  (35) 

The principle of  exchange of stability is valid and 
the convection sets in stationarily at the marginal  
state, provided ar = a~ = 0, where ar = Re (a) and 
~q = Im (a). Otherwise, overstabili ty is possible, pro- 
vided ar = 0 and a~ ¢ 0. Mult iplying equation (33b) 
by the complex conjugate function of F (i.e. F*) ,  
integrating over z from 0 to 1 and using equations 
(33a), (34) and (35), then we have, by setting ar = 0, 

- f l  {[IZS~: +aElb] 21 

+ a 2 Q [ 1 - R ( 1 - z ) ]  I(/) 2 - a2) WI 2 } dz 

R 2 ~  ~10"i ~ 
I/~F*(0) l z = a u r i C ( t , ,  + R -  1 - S - q a 2 / Q  

f l  f 2 2 1 ~,a, ~IF1 - a  Q-~L[1--R(1--Z)][I1)WI2 

+ a21 IV] 2] l dz = 2a 2 QR(Hi - a 2 Gi) (36) 
J 

where 

and 

O:'mTi I 

H i =  I m [ f  1 15W'D2W*dz 1. 

It should be remembered that  l - R ( 1  - z )  < 0 for a 
possible convection. 

Numerical ly solving equations (33)-(35) shows that  
R is minimized when e~tri = 0. The principle of  exch- 
ange of  stabilities is valid and composi t ional  con- 
vection sets in stationarily. The eigenvalue R, in the 
limits S --* oo and q/Q --* O, can be expressed as [15], 

R =  

f£ [119F]2 +a21F]2] dz +a2Q f£ l(192-a2)W12 dz 

aZQ f l  (1 -z)l(O 2 - - a  2) I4/] 2 dz 

(37) 

Applying the operator  (5- V x ) to equation (29a), 
we have 

V2(2 • V x u') = 0. (38) 

Non-sl ip boundary  conditions together with equa- 
tion (38) imply that  

5" (V x u') = 0 (39) 

which allows us to express _u' in terms of  a scalar 
variable w ; 

low\  2 
_u' = V t - ~ z ) -  (V w)z. 

The steady convective state with PL ~ OO are 

v2(°w) 
P =  \Oz) 

V4w = 4 

V24 = Q[R(1 - z ) -  1]V2Hw 

low\  z low\  
(40) 

0w 04 
w 0z 0z 0 at z =  1 (41) 

Ow a4 
w = ~z = R4+(R--  1 - S ) ~  z = 0 

at z = 0 .  (42) 

The critical value of  Q with R vanishing has been 
shown to be equal to - 720 at  the critical wavenumber 
a~ = 0 [4]. We assume the minimum value of  R in 
terms of  Q also occurs for a2<< 1 and S>> 1 and 
expand 4, w and R asymptotical ly in terms of  a 2 with 
l /S = O ( a  4) 

4(x,y,z) = 4o(X, Y,z)+a241(X, r , z )+O(a 4) 

w(x,y,z) = Wo(X, Y,z)+a2wl(X, Y,z)+O(a')  

R = Ro +a2R, +O(a 4) (43) 

where X = ax and Y = ay. 
After substituting equation (43) into equations 

(40)-(42), a set of  asymptotic  solutions is found 

(a  °)  : w0 = 4o z2(1 - z ) 2  
24 

4o = 4o(2, Y) 

.0 (44) 

, .  Qg2(z)_2 - 
O & )  : w, = z 2 (1 -z2)[g~ t z ) +  ~ -  VIle0 

g4 (Z) 2 + -i-~ (V~4o) ]/55440 

4, = [g4(z) Qgs(z)-C 2 , g6(z) . . . .  2 
[_ 14 + ~ J V n ¢ ° +  7--~-tVn¢°) 
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1 { [4080 (720+Q)2 l~4  ~ 

R, = QV2~ o- - L ~ -  ~ 

(720 + Q) 
+ 1 6 6 3 ~  V2(VH~0) 2 

5(720 + Q) VH" [(V~ ~o)V.g0] 
+ 16632 

+ ~ V H  ° [(VH~o)2VH~O]} 

where 

9~ (z) = 63+ 1612-  12622 +4923 

_ 7z 4 _ 6325 + 46z 6 _ 10z 7 

g2(z) = 23+ 162+9z 2 +2z  3 - - 5 2 4  - -  12z 5 + 14z ~ - - 4 , 7  7 

93(2) = 11 " (15+ 10z+ 5z 2 --524 +2z  5) 

g4 (z) = -- 722 + 70z 4 - 126z 5 + 84z 6 -- 202: 

,q5 (2) = 3524 -- 8425 + 70z 6 - 2027 

g6(E) = 1023 - -  1524 +625 

and V 2 = 32/3X 2 + (72/(~ y2. 
For  the linear analysis, we may neglect the non- 

linear terms in equation (45) and assume 

v~o = -¢,,. 
To the second order approximation, we find, for cellu- 
lar convective modes of  long wavelengths with a z << 1, 
S >> 1 and q = O(1), that 

. = (2+ +  ,,440  

[-4080 (720 + Q)-'7 a 2 ~[a4\ 
+L ~ 2T~16 ] ~ + o ~ )  (46) 

which gives the critical wavenumber as 

a~ = {1440(2 + 1440\~-)/S[~[-4080 (720 + Q) 2 l~ '  ' 2 2 ~ 2 ~  ~JJ 

provided Q < Q* = 2664.77. The minimum value of  
a~ 2 with respect to Q occurs at Q = Q** = 1013.26 
and equals to 11.226/S ~'2. In the limit S ~ oc, the 
critical values are reduced to the following [14], 

( ' 7 )  & . =  2 + - -  and a[ = 0 .  

For  Q* << Q, we assume a new scalar z = z/e. A 
possible balance, from equation (33), is achieved by 
choosing 

g. = O ( Q  15),a = O(Q'S),F -- O(1), W =  O(Q 4'5) 

and R = I + O ( Q  "5) .  (47) 

The linearized equations (33) and boundary con- 
ditions (34) and (35) are numerically solved. The cellu- 
lar convective modes of  short wavelength with a 2 >> 1, 

(45) 

Q >> Q* and q = O(1) are found. By quadratically 
approximating Rc and a~ at Q = 105, l06 and 107, we 
have 

& - I  =3 .0304Q t s+23 .705Q-215-30 .187Q 35 

a~ = 14.847-2.2877Q 15 +0.2803Q2/_~ 

provided Q( R -  1 ) / a  4 = 0 ( 1  ). 

For  morphological  modes of  short wavelength with 
Q(R-l)/a4 = o(1), the perturbation expansions of  
the variables are expressed in terms of  the wave- 
number a 2, then, the first order approximation of  the 
eigenvalue becomes, 

(1 + S+a2q/Q)a(l - e  2~) 
R = (48) 

[ (a+ 1)--e2"(a - 1)] 

which gives rise to the critical values [15], 

[Q(I + s)72  
" :  = " 

In the limit q ~ 0, at which case the effect of  surface 
tension becomes neglected, the critical values reduce 
to 

R ~ =  I + S  and a 2 ~ o o .  

&, and a{ as functions of  S for various values of  Q 
and q/Q are shown in Figs. 1 and 2. Two major modes 
of  instabilities, cellular convective and morphological,  
are discovered and would compete with each other for 
the occurrence at the marginal state. The mode, hav- 
ing a smaller eigenvalue R as the critical one R~, 
becomes dominant.  & of morphological  modes is 
plotted, for q/Q = 0, as a straight line and is deviated, 
for q/Q ~ O, away from that line slightly upward at 
small values of  S and negligibly at large values of  S. 
While R~ of cellular convective modes are plotted 
below those of  morphological  modes and, as the value 
of  q/Q increases from zero and up, would extend the 

R~ 10 a I 

| 
10 ' ~  Cell. cony. mode I / 

. . . .  Morph, mode / 

{J J" 

/ / /  

q/Q= ~ f J  

. . . . .  10° 
. . . . .  1 0 .  

1 10 10 a 10 ~ 10 4 10 6 
1+S 

Fig. 1. Rc as a function of S for various values of Q and q/Q. 
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80 

6 0  

(Oc)  2 40 

- -  Cei l .  corlv,  m o d e  

. . . .  Morph. m o d e  

I 
I 

I 
l 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ q / Q = l / /  

20 ~ / /  / / 

o - 

1 i 0  a 10 a 10 4 a 
$ 

Fig. 2. a~ as a function of S for various values of Q and q/Q. 

curves leftward and upward. The increasing value of 
q/Q would suppress both cellular convective and mor- 
phological modes, especially Q* << Q and S small. 

It is shown obviously that, for values of S large 
and fixed, the critical values Rc of cellular convective 
modes of both long and short wavelengths are insig- 
nificantly affected by the effect of surface tension, 
associated with the parameter q, but strongly depen- 
dent on the diffusive effect of the light material, 
exerted by the pressure gradient and associated with 
the parameter Q. This decreasing trend of Rc with Q 
is quite rapid at small values of Q (i.e. Q < Q*) for 
cellular convective modes of long wavelengths and 
become relatively slow at large values of Q (i.e. 
Q* << Q) for those of short wavelengths, which cases 
are even irrespective of the values of S. 

Rc of morphological modes strongly depends on the 
effect of surface tension. This increasing trend of Rc 
with q/Q is observed for Q* << Q and S small and 
becomes negligible for Q small and S large, a~ of 
morphological modes are infinite for any value of 
Q and S, provided q/Q = 0, and become finite and 
increase with S, provided q/Q ~ O, and decrease with 
q/Q slowly for S small and rapidly for S large, a~ of 
cellular convective modes of long wave lengths 
decrease with S and become vanishing as S --+ oo, and 
those of short wave lengths decrease with S slowly 
and approach fixed values. While a~ of cellular con- 
vective modes decrease with Q in the region of long 
wavelengths and, then, increase with Q in the region 

of short wavelengths, there exists a value of  Q, say 
Q**, such that a~ with respect to Q is minimum. It is 
found that, for S very large, minimum a~ occurs at 
Q** = 1013.26 and is approximated by 11.226/S ~/2. 

For  a fixed value of q/Q or Q, R¢ of the prevailing 
morphological modes increases with S upto a frontier 
value Sm and, as S goes from the frontier value Sm to 
infinity, Rc of cellular convective modes, now becom- 
ing dominant, decreases with S. There always exists, 
across the frontier value Sm, a jump from the mor- 
phological mode to the cellular convective mode. 
Table 1 shows, for various values of Q and q = 0, the 
critical values Ro and a~ at the frontier value Sm and 
its related prevailing modes. In the range Q < Q', 
where Q'  = 351.6 with a corresponding frontier value 
Sm = 1 1.499, cellular convective modes have smaller 
eigenvalues than those of morphological ones at the 
frontier value Sm and become solely dominant, while, 
in the range Q'~< Q, both cellular convective and 
morphological modes, having the same eigenvalue at 
the frontier value Sin, coexist simultaneously and the 
flow, as a result of appearance of both wavenumbers, 
would show a mixed structure. For  q/Q ~ O, the fron- 
tier points (Q, Sm) from Fig. 1, for Q fixed, are raised 
slightly upward, especially Q* << Q and S small. 

Domains on Q-S plane occupied by cellular con- 
vective modes of long and short wavelengths and mor- 
phological modes of short wavelengths are shown in 
Fig. 3. B1 is the locus joint by points (Sm, Q). Along 
the locus B~ upto (S~, Q'),  abrupt jumps of both Re 
and a~ occur across B~. While, along the locus B1 
from (S~, Q') and on, Re is continuous and a~ is 
discontinuous across B~. B~, B2, D~ and D2 are arti- 
ficial contours. Strictly speaking, cellular convective 
modes of long wavelengths are confined within the 
region between the contours D~ and B2 and of short 
wavelengths are confined within the region beyond 
the contour D2. While morphological modes of short 
wavelengths are confined below the contour B~. The 
effect of surface tension (i.e. q/Q # 0) would slightly 
lower the contour B~ down and reduce the region of 
morphological modes. 

NONLINEAR ANALYSIS 

The onset of convective instability implies that the 
kinetic energy dissipated by viscosity is balanced by 
the potential energy of the light material released at 

Table 1. Critical values Rc and a~ at the frontier value S m for q = 0 

O a m a~ (cell.) a~ (morph.) R~ Modes 

104 1.2372 13.061 oo 2.2372 Both 
103 3.8586 7.3597 oo 4.8586 Both 

Q' = 351.6 S~ = 11.499 7.4256 oo 12.499 Both 
102 28.622 6.8317 29.056 Cellular 
l0 t 275.78 6.7180 268.41 Cellular 
10 ° 2747.2 6.7081 2661.8 Cellular 
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the freezing interface and the infinitesimal amplitude 
begins to amplify. As R goes beyond Re, the dis- 
turbance will grow exponentially, but eventually it 
reaches a finite amplitude and becomes appreciable 
and the nonlinear effects on the fluid flows are no 
longer negligible. 

Let us suppose that, in the nonlinear steady convec- 
tion, 

( u > = 0 ,  ( p > = p  and < ~ > = ~  (49) 

where ( > is the averaged quantity over the entire 
horizontal plane. We also assume that 

u=u',  p = p + p '  and 4 = ~ + ~ '  (50) 

where u, p' and ¢' are the dynamically perturbed vari- 
ables and <p'> = <~'> = 0 by definitions of equation 
(50). Averaging the nonlinear steady governing equa- 
tions over the entire horizontal plane, we have 

1 ~p 
e~<u;2> = _ ~ + ~  

0 ~2~ 
~zz <u;~'> = ~77z 2 . (51) 

Equation (51b) can be integrated once to give 

at  <u~{'> = ~ .  (52) 

It should be remembered that ~ = 0 for the linear 
analysis. Multiplying equation (29a) by u' and equa- 
tion (29b) by ~', averaging over the horizontal plane 
and then integrating on z from 0 to 1, we have 

I' ; <u'-~'> dz+ <_U' "V2u'> dz = 0 (53) 
) 

f0 ; ((~'u'>) 2 dz+ [1 --R(1 -- z)]<~'u; > dz 

10 ş  

= f l  <~'V2~'> dz. (54) 

106 

c%gT / 

10 

~ 1  Cell. cony. 
" . 4  (shod) 

S 10 ~ ~ q/Q=O Dz 

10 2 

10 q/Q= I ~ B Q  

Morph. ~ [ 
1 ,, ,(,:~.~ r tl . . . . . . . . . . . .  ,,,,t~ , ~ ,  ,,-, . . . . . . . . . . . . . . .  

10 10 a 10 5 10' 10 ~ 10' 
Q 

Fig. 3. Domains occupied by cellular convective and mor- 
phological modes. 

Empirically, the 'shape assumption' is valid [19], if 
the flow pattern, first appearing at the marginal state, 
continues to manifest itself long past the marginal 
state. Let us assume that, just past the marginal state, 
~' and _u' can be expressed as 

~'= Af(x,y)F(z) 

u" = A[l)W(z)Vrd'(x,y) + a2f(x, y) W(z)2] (55) 

where W(z) and F (z) are the normalized solutions at 
the marginal state, A is the amplitude small but finite 
and f(x,  y) is a two-dimensional (2D) periodic wave 
function with wavenumber a. Without loss of gen- 
erality we also assume 

<.f2> = 1 and V~ c= -a2 f  (56) 

Substituting equation (55) into equation (54) and 
employing equation (56), the finite amplitude A just 
past the marginal state is expressed as 

f l  1 - z) WFdz 
A2 = Q(R-  Rc) (57) 

a2 fo W2F2 dz 

where a 2 is assumed to be the critical wavenumber by 
the 'shape-assumption'. The amplitude of the non- 
linear disturbance behaves like ( R -  Re) 1/2. 

We may assume 40 -= Af(X, Y) such that, as S -~ 
and a 2 << l ,  

<~2>=A2 and < f 2 > - - l .  (58) 

It can be shown that 

<]w, > =/I - -  

(fwo>=AZ2(1--z) 2 
24 (59) 

Z2(1 --Z) 2 GA 
55440 [ -  2~92(z)+1-~ 93(z)] 

{[, Q ] <]'~I > = A -- ]~4(m) ÷ ~g5(Z) 

(60) 

E = <(Vf) 4 > (64) 

G--- <f(Vf) 2 > (65) 

where G is equal to zero for rolls and 1/6 for hexagons 
and E is equal to one for rolls. The eigenvalue R just 
past the marginal state assumes the form : 

4080 (7720+Q) 2 
R~j = 77 216216 (63) 

R~ = Rc~ (720+Q) AG+ A2E (62) 
4158 252 

,6,, 
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a' 
R = R~0 + R~, ~ + O . (66) 

For  cellular convection of the long wavelength rolls, 
G = 0 and E = 1. Equation (54) gives the finite ampli- 
tude as a function of eigenvalue : 

A 2 = 252(R,-Re]) .  (67) 

The finite amplitude behaves like (R~ - R~) 1/2 instead 
of ( R - I ~ )  ~/2. For cellular convection of the long 
wavelength other than rolls, 

E-W2) 
A - ~ { G B + [ G 2 B 2 + ( R , - ~ I ) = J  ~ (68) 

where B = (720+l)14158. Subcritical instability is 
possible, provided R I -  R~l < 0 or 

A2E 
- A G B +  ~ < 0. (69) 

Since G = 0 for roils, subcritical instability does not 
exist. For  cellular patterns with G being nonzero, 
subcritical instability may occur, provided 
0 < A < (252/E)GB. 

The perturbed fields for ~' and u~ are 

(70) 

u" = Af(x,y){aZ[~z2(1-z2)]+O(a')} .  (71) 

If  we substitute equations (62) and (63) into equation 
(52), the gradient of the horizontally averaged light 
composition, due to the nonlinear effects, becomes 

O~ = A2a2 z2(1 -z)~ +O(a4)" (72) 
~3z 24 

For  cellular convection of rolls, we have 

~--~ = ~(R,  - Rc,)aZz2(1 - z )  2 + O(a4). (73) 
dz 

The net result of light compositional gradient in non- 
dimensional form, due to both non-convective state 
and nonlinear convective state, is derived as 

Oz Q [ 1 -  R(1-z)]+A2a2ZZ(l-z)224 + O(a4)' 

(74) 

The first term is associated with the diffusion of  the 
light material released at the lower boundary, its effect 
alone will result in a destabilizing compositional effect. 
The second term is associated with the compositional 
convection, its effect alone will result in a stabilizing 
compositional effect. 

CONCLUSIONS 

The main purpose of the present study is to analyze 
the linear and nonlinear behaviors of cellular con- 
vective and morphological instabilities of a fluid layer 
of a binary alloy, cooled from above and consequently 
frozen at bottom. The released light material, resulting 
from the freezing effect, is diffused by pressure and 
compositional gradient. As a result of a small cooling 
rate and a large thermal diffusivity, the effect of ther- 
mal buoyancy is insignificant, compared with that of 
compositional buoyancy. The necessary condition for 
a possible compositional convection requires R > 1. 
The strength of compositional convection depends on 
three factors: the cooling rate, the released light 
material and the material diffusion. The principle of 
exchange of stabilities is valid and convective insta- 
bility sets in stationarily. To the second-order approxi- 
mation, critical eigenvalues and wavenumbers for 
cellular convective modes of long wavelengths with 
a 2 << 1, S >> 1 and q = O(1) are 

+ 77 ~ - j ~ + o  ~ 

which gives the critical wavenumber as 

a~ = 14402+ . 

In the limit S ~ oo, the critical values reduce to 

a~ = 0 

and those of short wavelengths with a 2 >> 1, Q >> Q* 
and q = O(1) are 

Rc - 1 = 3.0304Q - 1/5 + 23.705Q - 2/5 _ 30.187Q - 3/5 

a~ = 14.847-2.2877Q i/5 +0.2803Q2/5 

provided Q ( R -  1)t a4 = O(1). 
For morphological modes of short wavelengths 

with Q ( R -  1)/a4 = o(1), the critical values are 

Rc = (1 +S){1  F q ]'/3}a ~ = [Q(I +S)]  2/3 
+ L2O(i-+ s)J L--SU-q _1 

In the limit q ~ 0, at which case the effect of surface 
tension becomes neglected, the critical values reduce 
to 

R e =  I + S  at a ~ .  

Nonlinear analysis reveals that disturbances of the 
finite amplitude are, just past the marginal state, 
behave like (R - R e )  t/2. For cellular convection of long 
wavelength, subcritical instability is possible for cellu- 
lar modes other than rolls, provided 0 < A < 
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252GB/E. The  net  result  o f  l ight c o m p o s i t i o n a l  gradi-  
ent,  due  to b o t h  non-convec t ive  state  and  non l inea r  
convec t ive  s ta te  is 

~3~ +A2a  2 z2(1 - z )  2 +O(a4)" 
0~ = Q[1 - R(I  - z)] 24 
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